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Graphene on incommensurate substrates: Trigonal warping and emerging Dirac cone
replicas with halved group velocity
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The adhesion of graphene on slightly lattice-mismatched surfaces, for instance, of hexagonal boron nitride
(hBN) or Ir(111), gives rise to a complex landscape of sublattice symmetry-breaking potentials for the Dirac
fermions. Whereas a gap at the Dirac point opens for perfectly lattice-matched graphene on hBN, we show that
the small lattice incommensurability prevents the opening of this gap and rather leads to a renormalized Dirac
dispersion with a trigonal warping. This warping breaks the effective time-reversal symmetry in a single valley.
On top of this an additional set of massless Dirac fermions is generated, which is characterized by a group
velocity that is about half the one of pristine graphene.
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Introduction. One of the main experimental challenges
towards the realization of next-generation graphene electronics
technology is the possibility to access low-energy Dirac point
physics. Silicon oxide (SiO2) substrates, for instance, are not
ideal for graphene because of the trapped charges in the
oxide. These impurity-induced charge traps limit the device
performances and make low-energy physics inaccessible.1 It
has been recently shown that placing graphene on hexagonal
boron nitride (hBN) yields improved device performances2—
graphene on hBN can have mobilities and charge inhomo-
geneities almost an order of magnitude better than graphene
devices on SiO2.

hBN is interesting because it has the same honeycomb
lattice structure of graphene, but only with two atoms in the unit
cell, B and N, that are chemically inequivalent. This precisely
causes hBN to be a wide band-gap insulator. When graphene
is placed on top of a hBN surface, the lowest-energy stacking
configuration has one set of C atoms on top of B and the
other C sublattice in the middle of the BN hexagons3,4—
assuming perfect lattice matching between graphene and
hBN. Consequently the substrate-induced potential breaks
the graphene sublattice symmetry. This leads to a gap at the
Dirac point and hence a robust mass for the Dirac fermions.
First principles band structure calculations3 put this gap in
the commensurate situation at ∼50 meV—an energy roughly
twice as large as kBT at room temperature. However, recent
scanning tunneling microscopy experiments5,6 do not detect a
sizable band gap.

In agreement with recent microscopic4 and ab initio7

studies, here we show within an effective continuum approach
that this discrepancy originates from the δa/a = 1.8% lattice
mismatch8 between graphene and hBN, which leads to a
moiré superstructure with periodicity much larger than a, the
graphene lattice constant. In this moiré lattice, carbon atoms
are embedded in a local environment of boron and nitrogen
atoms that is varying continuously and periodically. This leads
to a complex landscape of local sublattice symmetry-breaking
terms which prevent the opening of a band gap at the Dirac
point. Due to the incommensurability, the Dirac cones are
instead preserved in renormalized form, with a threefold global
symmetry due to a substrate-induced trigonal warping, which
is in excellent agreement with experimental observations.9 In

addition, we also show that a set of massless Dirac fermions
is generated at the corners of the supercell Brillouin zone.
At these corners the Dirac cones of pristine graphene have an
energy 11.21 δa/a eV, which for a 1.8% mismatch corresponds
to 202 meV. The quasiparticles are characterized by a collinear
group velocity vF , which in the relevant weak coupling regime
equals one half of v0

F , the Fermi velocity in pristine graphene.
They emerge in an energy range that is easily accessible by
photoemission experiments. As this set of these generated
massless Dirac fermions does not overlap in energy with any
other states, also gating or doping graphene triangular moiré
superlattices will provide a direct way to probe these Dirac
fermions.

Before presenting the calculations that explicate these
results, we wish to point out that very similar physics arises
for graphene on incommensurate substrates other than hBN, in
particular, for the experimentally relevant moiré superlattices
formed by graphene epitaxially grown on Ir(111) surfaces.9,10

As the (111) surface iridium atoms form a triangular lattice,
there are two distinct local Ir-C configurations with a high
symmetry.11 The first one occurs when a C atom is on top
of Ir, situating its three neighbors in troughs between Ir
sites—the natural equivalence of the two triangular graphene
sublattices is therefore broken. In the other high symmetry Ir-C
configuration, the honeycomb carbon ring is centered above
an iridium atom. In this case the effect of the Ir charges does
not break the sublattice symmetry and therefore no gap should
open at the Dirac point. While H decorated graphene/Ir(111)
superstructures have been reported to give rise to absolute
band-gap openings,10,11 recent angle-resolved photoemission
spectroscopy data have shown rather an anisotropic behavior
of the massless Dirac fermions close to the Dirac points due
to an enhanced trigonal warping.9

A number of interesting theoretical predictions exist
on graphene superlattices. It is known that external one-
dimensional periodic potentials can lead to a huge anisotropic
renormalization of the electronic spectrum,12,13 emerging zero
modes,14 and even to a Landau-like level spectrum as a result
of the presence of extra Dirac points.15 Dirac cone replicas at
different k points in the Brillouin zone (BZ) have been reported
also in triangular graphene superlattices16 as well as in bilayer
graphene superlattices.17,18 These findings, however, rely on a
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description that disregards local sublattice symmetry-breaking
terms, which are crucial when investigating the opening and
closing of gaps in graphene on slightly incommensurate hBN
or Ir(111). In this Rapid Communication, we investigate the
modification of the electronic spectrum of graphene moiré
superlattices, taking explicitly into account these essential,
slowly varying, sublattice symmetry-breaking terms in an
effective continuum approach.

Effective Hamiltonian. We start out by taking into account
the interaction induced by the substrate charges as an external
electrostatic potential for graphene’s Dirac electrons. The
potential has a triangular periodicity that coincides with
the arrangements of the centers of the BN hexagons (Ir
atoms at the 111 surface), V(r) = ∑

G VGeiG·r, where the G’s
are the reciprocal lattice vectors and VG the corresponding
amplitudes whose magnitudes depend on the modulus of
G alone. In the following, we restrict the sum to the six
wave vectors with equal magnitude G = 4π/(3 aS), G/G =
(±1,0),(± cos π/3,± sin π/3), where

√
3 aS indicates the BN

hexagons (Ir-Ir) distance. As the mismatch between aS and the
graphene carbon-carbon distance a is small, we can evaluate
the effect of the substrate-induced electrostatic potential on
the two triangular graphene sublattices A/B as the sum
of products of rapidly varying parts exp(iGSR · rA/B

j ), r
A/B

j

being the actual atomic positions and GSR rescaled wave
vectors with magnitude GSR = 4π/(3 a), times slowly varying
parts exp(iG̃ · r) which we treat in the continuum limit.
The G̃’s are the rescaled “coarse-grained” wave vectors with
magnitude G̃ = 4π |δa|/3a2, where δa = aS − a indicates the
lattice mismatch which without loss of generality has been
assumed to be positive. As a result, the effect of the substrate
charges leads to an average external potential acting equally
on each carbon atom and a mass term breaking the graphene
sublattice symmetry given by V±(r) = [VA(r) ± VB(r)]/2 =
V0/2

∑
G̃[1 ± exp iφG̃] × exp(iG̃ · r). The contribution of the

rapidly varying parts of the potential are now encoded in the
nontrivial phase factors φG̃ = −GSR · δ, where δ = −a(1,0)
is the graphene nearest-neighbor vector and GSR ‖ G̃.

Since the large periodicity of the moiré superstruc-
ture prevents intervalley scattering, we can describe the
low-energy quasiparticles near the corners K± = {2π/(3a),
±2π/(3

√
3a)} of the graphene hexagonal Brillouin zone as

four-dimensional spinors � = [ψK+,A,ψK+,B,ψK−,B,ψK−,A],
characterizing the electronic amplitudes on the two crystalline
sublattices, with an effective Hamiltonian in the valley
isotropic representation19

Ĥ = v0
F τ0 ⊗ p · σ + V+(r)τ0 ⊗ σ0 + V−(r)τz ⊗ σz. (1)

Here we use direct products of Pauli matrices σx,y,z, σ0 ≡ 1̂
acting in the sublattice space and τx,y,z,τ0 ≡ 1̂ acting on the
valley degree of freedom (K±).

For V±(r) ≡ 0, Ĥ has a chiral symmetry which can be
expressed as {Ĥ,τ0 ⊗ σz} ≡ 0. This anticommutation relation
implies that in each valley any eigenstate �ε with energy ε has a
particle-hole partner τ0 ⊗ σz� with energy −ε. This property
implies the double degeneracy of the zero-energy states in
each valley. In the presence of substrate-induced interactions
of the form as in Eq. (1), the system still possesses a chiral
symmetry provided the external superlattice potentials satisfy
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FIG. 1. (Color online) (a) Renormalization of the Fermi velocity
at the Dirac point as a function of V0. The points are the results of
the exact diagonalization of the low-energy Hamiltonian whereas the
continuous line is the analytical result from second-order perturbation
theory. (b) Energy of the Dirac point as a function of the external
potential amplitude V0. (c), (d) Fermi lines for different values of the
potential amplitude V0 close to the K+ (c) and the K− (d) valleys.
Energies and wave vectors are in units of h̄vF G̃ and G̃, respectively.

V±(r + T) = −V±(r). In this case it is possible to define a
new chiral operator15 τ0 ⊗ σzS, where S is a shift operator
S�(r) = �(r + T). For the electrostatic potentials defined
above, a translation vector for which the triangular potential
V+(r + T) ≡ −V+(r) is absent, thereby implying particle-hole
symmetry breaking and a consequent lifting of the zero-energy
state degeneracy.

This, however, does not lead to the opening of any absolute
band gap since the G̃ ≡ 0 component of the local sublattice
symmetry-breaking terms identically vanishes.4 Therefore,
the Dirac cones are preserved with the effect of particle-hole
asymmetry eventually leading to a shift of the conical points
[shown in Fig. 1(b)] of the two valleys, reminiscent of the
graphene doping caused by adsorption of metal substrates.20

We also find the Dirac cones to be renormalized in triangular
moiré superlattices. In Fig. 1(a) we show the behavior of the
collinear Fermi velocity at the conical points for different
values of the interaction strength V0. The substrate-induced
interaction leads to a decrease of the Fermi velocity,21 as can
be found in the weak potential limit by treating the effect of
the electrostatic potentials in second-order perturbation theory
[cf. the continuous line in Fig. 1(b)] according to which

vF = v0
F

[
1 − 6V 2

0

h̄2v02
F G̃2

]
.

The local sublattice symmetry-breaking term breaks the
effective time-reversal symmetry on a single valley,22

T̃ = i(τ0 ⊗ σy)Ĉ, with Ĉ the operator of complex
conjugation and T̃ [ψK+,A,ψK+,B,ψK−,B,ψK−,A] = [ψ


K+,B,

−ψ

K+,A,ψ


K−,A,−ψ

K−,B]. This is clearly visible in Figs. 1(c)

and 1(d), where we show the topology of the Fermi lines
close to the Dirac points in the two graphene valleys. There
is a trigonal warping which breaks the k → −k symmetry of
the Fermi lines, i.e., ε(K±,k) �= ε(K±,−k), consistent with
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the threefold symmetry of the band structure experimentally
detected in Ir(111) superlattices.9 The trigonal warping has
an opposite effect on the two valleys since the external
electrostatic potentials do not break the true time-reversal
symmetry interchanging the valleys22 T = −(τy ⊗ σy)Ĉ
with T [ψK+,A,ψK+,B,ψK−,B,ψK−,A] = [ψ


K−,A,−ψ

K−,B,

−ψ

K+,B,ψ


K+,A]. Hence, the Fermi lines fulfill
ε(K±,k) ≡ ε(K∓,−k), as can been shown in the weak
potential limit where the energy dispersion of the low-energy
quasiparticles reads

ε(K±,k) 
 h̄vF s|k| ∓ 3
√

3s

h̄v0
F

|k|2
G̃3

V 2
0 sin 3θk. (2)

Here θk is the angle of the vector k with respect to the
k̂x direction and s = ±1 for quasielectrons and quasiholes,
respectively. By increasing the strength of the potential V0

[cf. Figs. 1(c) and 1(d)], the warping effect is enhanced and
results in an anisotropy much larger than the one expected in
freestanding graphene.9

Emergence of Dirac cone replicas. We have also obtained
the energy dispersion in the full supercell Brillouin zone (SBZ)
by exact diagonalization of the Hamiltonian Eq. (1). The
effect of the substrate-induced external potential V±(r) has
been incorporated into our calculations through the scattering
matrix elements between the chiral eigenstates of the graphene
quasiparticles

ψs(K±,k) =
(

ψK±,A

ψK±,B

)
= 1√

2

(
1

s e±i θk

)
ei k·r.

Figure 2 shows the ensuing energy dispersion of the first and
second bands above and below the original Dirac points in
each valley. Contrary to Ref. 16 we do not find a generation of
Dirac cones at the six M̃ points of the SBZ. Indeed, the energy
separation between the first and the second band above and

below the original Dirac points goes to zero, respectively, at
the (K±,K̃±), (K±,K̃∓) corners of the SBZ. This qualitative
difference is caused by the sublattice symmetry-breaking term
V−(r) which does not allow for a sixfold symmetry of the band
structure. The topology of the Fermi lines close to the SBZ
corners clearly shows the emergence of Dirac cone replicas.
However, while above the original Dirac points [cf. Fig. 2(c)]
these new massless quasiparticles are obscured by other states,
below the original Dirac points there is an energy window
where there are no other states than these new massless Dirac
fermions. Therefore there is one energy value—apart from
the original Dirac point—where the density of states (DOS)
vanishes linearly. It is worth noticing that this asymmetry of the
DOS reflects the particle-hole symmetry breaking discussed
above.

Further insight into the properties of the Dirac cone
replicas is obtained by introducing an effective Hamiltonian
close to the three equivalent corners of the SBZ.23 In the
following we will restrict to consider the behavior close to
the (K±,K̃∓) points, relevant for the Dirac cone replicas
generated below the original Dirac points. In the absence of
external electrostatic potentials V±(r) ≡ 0, there are three de-
generate hole excitations with energy ε(K±,K̃∓) = −h̄vF K̃ .
This degeneracy is lifted by the substrate-induced electrostatic
potentials and, as a result, one finds a singlet excitation with
energy εS(K±,K̃∓) = −h̄vF K̃ − V0 and a doubly degenerate
state with energy εD(K±,K̃∓) = −h̄vF K̃ + V0/2. It can be
easily shown that the effective Hamiltonian in the vicinity
of this doubly degenerate state corresponds precisely to a
massless two-dimensional Dirac equation with Fermi velocity
vR

F = v0
F /2 and an isotropic dispersion relation

εD(K±,δk±) = εD(K±,K̃∓) + h̄
v0

F

2
s ′δk±, (3)
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FIG. 2. (Color online) Energy dispersion relations for a graphene triangular moiré superlattice with V0 = 0.1h̄ v0
F G̃ close to the two

graphene valleys K+ (a) and K− (b). The arrows indicate the corners K̃± of the SBZ where the Dirac cone replicas are generated. (c) Topology
of the Fermi lines close to the emergent Dirac cones. Units are the same as in Fig. 1.
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FIG. 3. (Color online) Behavior of the Dirac point energy
εD(K±,K̃∓) (a) as a function of the external potential amplitude
V0. The continuous line is the result of the degenerate perturbation
theory whereas the points are the result of the exact diagonalization.
(b) Group velocity at the Dirac point replicas as a function of the
strength of the potential V0. (c), (d) Fermi lines close to the emergent
Dirac points εD(K+,K̃−) (c) and εD(K−,K̃+) (d) for different values
of the amplitude V0. Units are the same as in Fig. 1.

where we introduced δk± = k − K̃∓ and s ′ = ±1 is the
band index. The foregoing weak coupling analysis is in
perfect agreement with the numerical results obtained by exact
diagonalization of the Hamiltonian. This is shown in Figs. 3(a)
and 3(b) where we plot the behavior of the Dirac point energy
εD(K±,K̃∓) and the Fermi velocity vR

F as a function of the
potential strength V0. Away from but close to the Dirac points,
we find a trigonal warping respecting the threefold symmetry
of the band structure, as it is shown in Figs. 3(c) and 3(d)
where we plot the Fermi lines for different values of V0.

For moiré superlattices of 100 unit cells and depend-
ing on the precise strength of the interaction between the
graphene and substrate, the typical energy of the emerging

Dirac points is 100–200 meV, which is also the relevant
energy regime for graphene on hBN. Such a value can be
reached in the experimental realm, for instance, by applying
a back gate voltage or doping graphene by adsorption on
metal substrates.20 Even more, with the set of the potential
parameters of Fig. 2, the energy window in which the emerging
Dirac cones do not overlap with other states is ∼42 meV, much
larger than room-temperature thermal energy. This energy
window can in principle be tuned by changing the superlattice
parameters.

Conclusions. By setting up an effective continuum ap-
proach, we have derived the electronic properties of graphene
moiré superlattices generated by adhesion of graphene sheets
onto lattice-mismatched substrates. While the complex land-
scape of sublattice symmetry-breaking terms prevents the
opening of a band gap at the Dirac point,4,7 we have demon-
strated that with mismatched substrates one can tailor the low-
energy band dispersion—in the experimental realm this can
be achieved for instance by engineering the mismatch angle
among the hBN and the graphene layer. In agreement with
recent experiments,9 we have found a threefold symmetry of
the band structure associated with a substrate-induced trigonal
warping of the Dirac cones and an anisotropic reduction of the
Fermi velocity, possibly leading to an enhanced localization
of the massless Dirac fermions.21

In addition, a set of Dirac fermions is generated in graphene
moiré superlattices. By properly and explicitly accounting for
local sublattice symmetry terms, we have shown that these
quasiparticles are generated at the corners of the supercell
Brillouin zone and are characterized by a collinear group
velocity at the conical points of ∼v0

F /2.
Note added. Recently, a scanning tunneling microscopy

experiment on graphene on hBN has shown the emergence of
superlattice Dirac cones with a Fermi velocity of about 58%
the pristine graphene one.24

Acknowledgments. L.Y. thanks F. Guinea for valuable
discussions. This research was supported by the Dutch Science
Foundation NWO/FOM.

1J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet,
K. von Klitzing, and A. Yacoby, Nat. Phys. 4, 144 (2008).

2C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei,
K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone,
Nat. Nano. 5, 722 (2010).

3G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, and J. van
den Brink, Phys. Rev. B 76, 073103 (2007).

4B. Sachs, T. O. Wehling, M. I. Katsnelson, and A. I. Lichtenstein,
Phys. Rev. B 84, 195414 (2011).

5J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod,
A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and
B. J. LeRoy, Nat. Mater. 10, 282 (2011).

6R. Decker, Y. Wang, V. W. Brar, W. Regan, H.-Z. Tsai, Q. Wu,
W. Gannett, A. Zettl, and M. F. Crommie, Nano Lett. 11, 2291
(2011).

7N. Karche and S. K. Nayak, Nano Lett. 11, 5274 (2011)
8L. Liu, Y. P. Feng, and Z. X. Shen, Phys. Rev. B 68, 104102
(2003).

9S. Rusponi, M. Papagno, P. Moras, S. Vlaic, M. Etzkorn, P. M.
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